Telah diketahui bahwa generator arus bolak-balik sebagai sumber tenaga listrik yang mempunyai GGL :
E = Emax sint Persamaan di atas jelas-jelas menunjukkan bahwa GGL arus bolak-balik berubah secara sinusoidal. Suatu sifat yang menjadi ciri khas arus bolak-balik.
Dalam menyatakan harga tegangan AC ada beberapa besaran yang digunakan, yaitu :
- Tegangan sesaat : Yaitu tegangan pada suatu saat t yang dapat dihitung dari persamaan E = Emax sin 2ft jika kita tahu Emax, f dan t.
- Amplitudo tegangan Emax : Yaitu harga maksimum tegangan. Dalam persamaan : E = Emax sin 2ft, amplitudo tegangan adalah Emax.
- Tegangan puncak-kepuncak (Peak-to-peak) yang dinyatakan dengan Epp ialah beda antara tegangan minimum dan tegangan maksimum. Jadi Epp = 2 Emax.
- Tegangan rata-rata (Average Value).
- Tegangan efektif atau tegangan rms (root-mean-square) yaitu harga tegangan yang dapat diamati langsung dalam skala alat ukurnya.
Arus dan tegangan sinusoidal.
Dalam generator, kumparan persegi panjang yang diputar dalam
medan magnetik akan membangkitkan Gaya Gerak Listrik (GGL) sebesar :
E = E
m sin
t
Dengan demikian bentuk arus dan tegangan bolak-balik seperti persamaan di atas yaitu :
i = I
m sin
t
v = v
m sin
t
im dan vm adalah arus maksimum dan tegangan maksimum.
Bentuk kurva yang dihasilkan persamaan ini dapat kita lihat di layar Osiloskop. Bentuk kurva ini disebut bentuk sinusoidal gambar.
Harga Efektif Arus Bolak-balik.
Dalam rangkaian arus bolak-balik, baik tegangan maupun kuat arusnya berubah-ubah secara periodik. Oleh sebab itu untuk penggunaan yang praktis diperlukan besaran listrik bolak-balik yang tetap, yaitu harga efektif.
Harga efektif arus bolak-balik ialah harga arus bolak-balik yang dapat menghasilkan panas yang sama dalam penghantar yang sama dan dalam waktu yang seperti arus searah.
Ternyata besar kuat arus dan tegangan efektifnya masing-masing :
I
eff = [
]
½I
ef =
= 0,707 I
maxV
ef =
= 0,707 V
max Kuat arus dan tegangan yang terukur oleh alat ukur listrik menyatakan harga efektifnya.
Resistor dalam rangkaian arus bolak-balik.
grafik arus dan tegangan adalah
Bila hambatan murni sebesar R berada dalam rangkaian arus bolak-balik, besar tegangan pada hambatan berubah-ubah secara sinusoidal, demikian juga kuat arusnya. Antara kuat arus dan tegangan tidak ada perbedaan fase, artinya pada saat tegangan maksimum, kuat arusnya mencapai harga maksimum pula.
Kumparan induktif dalam rangkaian arus bolak-balik.
Andaikan kuat arus yang melewati kumparan adalah I = I
max sin
t. Karena hambatan kumparan diabaikan I.R = 0
Gelombang arus dan tegangan
Besar GGL induksi yang terjadi pada kumparan E
1 = -L
Bila tegangan antara AB adalah V, kuat arus akan mengalir bila :
V = L
V = L
V =
L I
max. cos
t
Jadi antara tegangan pada kumparan dengan kuat arusnya terdapat perbedaan fase
, dalam hal ini tegangan mendahului kuat arus.
Capasitor Dalam Rangkaian Arus Bolak-balik. Andaikan tegangan antara keping-keping capasitor oada suatu saat V = V
max sin
t, muatan capasitor saat itu :
Q = C.V
I =
=
I =
C
.V
max cos
t
Jadi antara tegangan dan kuat arus terdapat perbedaan fase
dalam hal ini kuat arus lebih dahulu
daripada tegangan.
Reaktansi.
Disamping resistor, kumparan induktif dan capasitor merupakan hambatan bagi arus bolak-balik. Untuk membedakan hambatan kumparan induktif dan capasitor dari hambatan resistor, maka hambatan kumparan induktif disebut Reaktansi Induktif dan hambatan capasitor disebut Reaktansi Capasitif.
Reaktansi =
- Reaktansi Induktif (XL)
X
L =
=
X
L dalam ohm, L dalam Henry.
a.Reaktansi Capasitif (X
C)
|
|
X C = |
|
X
C dalam ohm, C dalam Farad.
Sebuah penghantar dalam rangkaian arus bolak-balik memiliki hambatan, reaktansi induktif, dan reaktansi capasitif. Untuk menyederhanakan permasalahan, kita tinjau rangkaian arus bolak-balik yang didalamnya tersusun resistor R, kumparan induktif L dan capasitor C.
Menurut hukum ohm, tegangan antara ujung-ujung rangkaian :
V = VR + VL + VC (VEKTOR)
Dengan penjumlahan vektor diperoleh :
I
Z =
Z =
Z disebut Impedansi
Ada tiga kemungkinan yang bersangkutan dengan rangkaian RLC seri yaitu :
1.
Bila X
L>X
C atau V
L>V
C, maka rangkaian bersifat induktif. tg
positif, demikian juga
positif. Ini berarti tegangan mendahului kuat arus.
2.
Bila X
LC atau VLC, maka rangkaian bersifat Kapasitif. tg negatif, nilai negatif. Ini berarti kuat arus mendahului tegangan.
Demikian juga untuk harga V =
3.
Bila X
L=X
C atau V
L=V
C, maka rangkaian bersifat resonansi. tg
= 0 dan
= 0, ini berarti tegangan dan kuat arus fasenya sama.
Resonansi Jika tercapai keadaan yang demikian, nilai Z = R, amplitudo kuat arus mempunyai nilai terbesar, frekuensi arusnya disebut frekuensi resonansi seri. Besarnya frekuensi resonansi dapat dicari sebagai berikut :
XL = XC
wL =
w2 =
f =
atau T =
f adalah frekuensi dalam cycles/det, L induktansi kumparan dalam Henry dan C kapasitas capasitor dalam Farad.
Getaran Listrik Dalam Rangkaian LC.
Getaran listrik adalah arus bolak-balik dengan frekuensi tinggi.
Getaran listrik dapat dibangkitkan dalam rangkaian LC.
| Kapasitor C dimuati sampai tegangan maksimum. Bila saklar ditutup mengalir arus sesuai arah jarum jam, tegangan C turun sampai nol.
Bersamaan dengan aliran arus listrik timbul medan magnetik didalam kumparan L. |
Medan magnetik lenyap seketika pada saat tegangan C sama dengan nol. Bersamaan dengan itu timbul GGL induksi, akibatnya tegangan C naik kembali secara berlawanan. Karenanya dalam rangkaian mengalir arus listrik yang arahnya berlawanan dengan arah putar jarum jam. Jadi dalam rangkaian LC timbul getaran listrik yang frekuensinya :
f =
LATIHAN SOAL
01.
Generator AC menggunakan kumparan dengan 100 lilitan dan luas permukaan 10 cm
2. Kumparan diputar dalam
medan magnet dengan induksi magnetic 10
-3 tesla. Kecepatan angulernya 100
p rad/s.
Tentukan :
a. tegangan maksimumnya. (10-2 p volt)
b. persamaan tegangan (10-2 p sin 100 p.t
c.
Tegangan efektifnya. ( ½
10
-2 p volt )
d. Frekwensinya. (50 Hz)
02. Suatu kumparan terdiri dari 10 lilitan diputar dalam medan magnet dengan frekwensi 50 Hz, sehingga menghasilkan fluks maksmum sebesar 4.105 maxwell. (1 weber = 108 maxwell)
Tentukan :
a. persamaan tegangan induksi sebagi fungsi dari waktu.(4 p sin 100 p.t)
b.
Besar tegangan tersebut pada saat kumparan membuat sudut 0
o, 30
o, 60
o dengan garis
gaya medan magnet. (12,56 volt 10,8 volt, 6,28 volt)
03. Kumparan dengan induktansi 0,14 Henry dan hambatan 12 ohm dihubungkan seri pada tegangan 110 volt dengan frekwensi 25 Hz. Tentukanlah :
a. Impedansinya. (25,1 ohm)
b. Arus pada kumparan. (4,38 amper)
c. Sudut fasenya. (61,33o)
04. Sebuah kapasitor dihubungkan seri dengan resistor dari 30 ohm dan dipasang pada tegangan AC dari 220 volt. Jika reaktansi kapasitor 40 ohm, maka tentukan :
a. arus pada rangkaian. (4,4 A)
b. Sudut fase antara arus dan tegangan dalam rangkaian. (53o)
05. Sebuah kumparan mempunyai induktansi diri 5 Henry, dipasang pada arus bolak-balik yang berfrekwensi 50 Hz. Tentukan reaktansi induktifnya. (1570 ohm)
06. Sebuah kapasitor dipasang pada arus bolak-balik dari generator yang rotornya melakukan putaran dengan kecepatan anguler 80 rad/s. Tentukan kapasitas kapasitor tersebut, jika reaktansi kapasitifnya 25 ohm. (5.10-4 farad)
07. Suatu rangkaian R-L dihubungkan pada tegangan AC dari 350 volt. Bila diketahui besar hambatan murni = 30 ohm dan reaktansi induktif = 40 ohm, dan arus mempunyai frekwensi 200/p Hz, maka tentukan :
a. Impedansinya. (50 ohm)
b. Arus pada inductor. (7 A)
c. Beda potensial antara ujung-ujung resistor. (210 volt)
d. Beda potensial antara ujung-ujung inductor. (280 vlt)
e. Banyak tenaga yang dipakai oleh rangkaian. (1470 watt)
f. Induktansi daripada inductor. (0,1 henry)
08. Kumparan dengan induktansi diri 0,5 henry dipasang pada sumber tegangan bolak-balik yang berfrekwensi 50 Hz dan mempunyai tegangan maksimum 157 volt. Tentukan:
a. reaktansi induktifnya. (157 ohm)
b. Arus maksimum yang melalui kumparan tersebut,. (1 A)
c. Tuliskan persamaan arusnya. (I = sin (100 p.t – ½ p) Amper
09. Sebuah kapasitor dengan 40 mF dipasang pada sumber tegangan bolak-balik dengan kecepatan anguler 250 rad/s dan bertegangan maksmum 80 volt. Tentukan :
a. Reaktansi kapasitifnya. (100 ohm)
b. Arus maksimum yang melalui kapasitor. (0,8 A)
c. Persamaan arusnya. (I = 0,8 sin(250t + ½ p) amper
10. Dari suatu rangkaian R-L-C dihubungkan dengan sumber tegangan arus bolak-balik dari 120 volt dan berfrekwensi 50 Hz. Jika kuat arus yang ditimbulkan adalah 2,4 amper dan besarnya hambatan murni 30 ohm, maka tentukanlah :
a. impedansinya. (50 ohm)
b. Induktansi diri dari induktor, jika reaktansi kapasitifnya 20 ohm. (0,19 H)
11. Sebuah kumparan jika dihubungkan pada sumber tegangan arus searah dari 120 volt menghasilkan kuat arus 4 ampere. Tetapi jika dihubungkan dengan sumber tegangan arus bolak-balik dari 120 volt, maka kuat arusnya yang timbul 2,4 amper. Tentukanlah :
a. reaktansi induktifnya. (40 ohm)
b. Suduit fase (53o)
c. Daya listriknya. (172,8 watt)
12. Ditentukan resistor dari 250 ohm, inductor dengan induktansi 0,5 henry dan kapasitor yang kapasitansinya 5 mF dirangai seri. Jika kecepatan angulernya 200 rad/s, maka tentukan :
a. sifat rangkaian. (kapasitif)
b. Impedansi rangkaian (934,08 ohm)
c. Beda sudut fase antara V dan I (tegangan tertinggal 74o 28’)
d. Induktansi harus diganti berapa agar terjadi resonansi. ( 5 henry)
13. Suatu rangkaian R-L memberikan kuat arus 4 amper jika dipasang pada sumber teangan arus searah dari 160 volt, apabila rangkaian tersebut dipasang pada sumber tegangan arus bolak-balik dari 200 volt, maka kuat arus yang ditimbulkan akan tetap sama besar. Tentukan impedansi rangkaian. (50 ohm)
14. Sebuah rangkaian L-C beresonansi pada 60 Hz. Jika kapasitas kapasitornya 10 mF dan resistornya 100 ohm, maka tentukan harga induktansinya. (0,704 henry)
15. Suatu kumparan mempunyai hambatan 20 ohm dengan induktansi 0,005 H dipasang pada sumber tegangan arus bolak-balik yang berkecepatan anguler 3000 rad/s dengan tegangan jepit 150 volt, maka tentukan :
a. kuat arus dalam rangkaian. (6 A)
b. Factor daya. (0,8)
c. Daya semu (900 watt)
d. Daya sebenarnya. (720 watt)
=====================o0o=====================